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The direct application of the space-group representation theory, makes possible to obtain limitations for the symmetry of 
SOP on lines and planes of symmetry in one-electron Brillouin zone. In the case of highly symmetric UPt3 only theoretical 
nodal structure of IR E2u is in agreement with all the experimental results. On the other hand, in the case of high-Tc-
superconductors the two electron description of Coper pairs in D2h symmetry is not sufficient to describe experimental nodal 
structure. It was shown that in this case, the nodal structure is the result of underlying interactions between two-electron 
states and hidden symmetry D4h. 
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1. Introduction 
 
Unconventional superconductivity is connected with 

different symmetry violations and the superconducting 
order parameter in these materials vanishes at points and 
lines on Fermi-surface [1]. Time-reversal symmetry is 
violated in heavy fermion superconductors (UTh)Be13 ,  
Sr2RuO4, PrOs4Sb12 [2] and high-temperature 
superconductors [3]. The nodal structure of 
unconventional superconductors was investigated by 
virtue of point-group approach [1, 4, 5] and a space-group 
approach [6-11]. The space-group approach is based on 
space-group irreducible representations (IRs) for one-
electron wave functions [12] and on the assumption of 
Ginzburg and Landau [13] that superconducting order 
parameter (SOP) is identical with the wave function of a 
Cooper pair. 

 
 
2. Space group approach 
  
The general principles of constructing singlet and 

triplet pairs were formulated by Anderson [14]. In a 
spherically symmetric case, the electrons in a Cooper pair 
have opposite momentums. The wave function of the pair 
is antisymmetric with respect to permutations and 
invariant under lattice translations, and transforms 
according to the IR of the point group. The spatial parts of 
singlet and triplet pairs a given by two following formulae: 
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Superscripts denote the number of electronic 

coordinate and subscript I corresponds to the action of 
space inversion on the initial spatial function. The wave 

function of a singlet pairs is even, and that of triplet pairs 
is odd. In real crystals, the wave function of electrons is 
characterized by the star {k} of wave vector k. Clearly, a 
correct translation-invariant two-electron function must be 
antisymmetric with respect to permutations and must be a 
linear combination of the functions belonging to all the 
prongs of the star {k}. The structure of such a function 
depends on vector  k  and its symmetry group H.  On the 
directions and planes of symmetry   one-electron wave 
functions φ are transformed according to IR D of group H 
and thus the symmetry of two-electron functions (1) and 
(2) is more complex. It follows from the induced 
representation theory [12], that the symmetry properties of 
function (1) and (2) on directions and planes of symmetry 
are defined by their characters on the group M=H+IH: 
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where plus sign corresponds to the singlet pair, minus sign 
corresponds to the triplet pair and  h is an element of group 
H. To obtain the total basis set one should act on these 
functions by the pure rotational elements transforming the 
initial k-vector into other prongs of its star and to 
decompose it into irreducible basis sets. This procedure is 
simplified by the Frobenius reciprocity theorem [6-12], 
according to which only those IRs of the whole group G 
are possible, whose characters are not orthogonal to 
characters (3), (4). The analysis for the planes of 
symmetry is given in Table 1. The relevant subgroup C2h 
has two even and two odd IRs. The singlet transforms 
according to IR Ag of C2h subgroup. The absence of the 
other IR Bg means that some even IRs of he group G are 
forbidden at the plane of symmetry. If one of such IRs 
corresponds to Cooper pairing, the SOP of this symmetry 
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has nodes on this plane. The intersection of this plane with 
Fermi-surface results in line of nodes. The spatial part of 
triplet function also has line nodes, but when this function 
is multiplied by triplet spun function, transforming 
according to IR T2g in Oh group, total wave function 
contains all IRs of C2h group. This case corresponds to the 

Blount theorem [5]. In axial symmetry groups, like D6h, 
spin parts Ms=+1 and Ms=-1 (ferromagnetic spin 
orientation, IR E1g) transform independently from pair 
with Ms=0 (antiferromagnetic spin orientation, IR A2g) and 
lines of nodes are required by the symmetry.  

 
Table 1. Nodal structure of two-electron states on the planes of symmetry for groups Oh and D6h. 

 
Symmetry element G Type of 

character E σh I C2 
IR of C2h Structure on 

the  w.f. 
Oh, D6h χ+ 1 1 1 1 Ag nodes 
Oh, D6h χ- 1 1 -1 -1 Bu nodes 
Oh χ-×χ(T1g) 3 -1 -3 1 2Au+Bu no nodes 
D6h χ-×χ(E2g) 2 -2 -2 2 2Au nodes 
D6h χ-×χ(A2g) 1 1 -1 -1 Bu nodes 

 
 

Let us consider as an example of the odd [15] and 
antiferromagnetic [16] superconductor UPt3 (D6h 
symmetry). Making use of the last line of Table 1 and 
Frobenius reciprocity theorem possible IRs for 
antiferromagnetic odd pairs are listed in Table 2.  
 

Table 2. Possible IRs for triplet antiferromagnetic 
Cooper pairs in D6h. symmetry. 

 
 

Planes of symmetry НП D6h 
σh  B1u+B2u+E1u 
σv  A1u, B1u, E1u, E2u 
σ'v  A1u, B2u, E1u, E2u 
Direction Z1) A1u 

 
 

1) For one-dimensional IRs of H. 
If the wave vector of an electron is parallel to the Z 

axis, the wave vector group H is C6v and the symmetry 
group M of the pair is D6h. In this case the result depends 
on the symmetry of one-electron function φ with respect of 

rotations around the axis. We consider here the one-
dimensional small IR for which the symmetry of spatial 
part of two-electron function is A2u. 

Experimental data [17] indicate that there is a line of 
zeros in the basal plane. It follows from the Table 2, that 
the corresponding IRs are A1u, A2u, and E2u, which are not 
among the possible IRs for antiferromagnetic triplet pairs. 
There is also experimental evidence [17] that the SOP 
becomes zero at a point on the vertical axis. In light of 
this, the A2u IR, which has lines of zeros in vertical planes, 
and theA1u IR, which does not have zero in the vertical 
direction, must be discarded. The remaining IR, E2u, has 
zero at a point in the vertical direction and in basal plane. 
Thus, the nodal structure of the SOP of E2u symmetry for 
an antiferromagnetic phase of D6h symmetry agrees with 
all experimental data on the symmetry of the SOP of UPt3. 
This conclusion is in line with simulation results [18]. 
Magnetization anisotropy data for UPt3 in the 
superconducting state can only be accounted for by the E1g 
and  E2u  IRs [19]. Given that the SOP is odd, this also 
gives the IR E2u. 

 
Table 3. Spatial parts of Cooper pair wave functions for point groups D2h   and  D4h  and their nodal planes. 

 
D2h D4h 

IR Pairing function nodes IR Pairing function nodes 
Ag Φ

s
 +Φ

s
C2x+Φ

s
C2y+Φ

s
C2z no A1g Φs

 +Φs
C2x+Φs

C2y+Φs
C2z+Φs

C2d’+Φs
C4+Φs

C4+Φs
C2d no 

B1g Φs
 -Φs

C2x-Φs
C2y+Φs

C2z σx, σy A2g Φs
 -Φs

C2x-Φs
C2y+Φs

C2z-Φs
C2d’+Φs

C4+Φs
C4-Φs

C2d σx, σy, σxy, σ-xy
B2g Φs

 -Φs
C2x+Φs

C2y-Φs
C2z σz σx B1g Φs

 +Φs
C2x+Φs

C2y+Φs
C2z-Φs

C2d’-Φs
C4-Φs

C4-Φs
C2d σxy, σ -xy 

B3g Φs
 +Φs

C2x-Φs
C2y-Φs

C2z σz, σy B2g Φs
 -Φs

C2x-Φs
C2y+Φs

C2z+Φs
C2d’-Φs

C4-Φs
C4+Φs

C2d σx, σy, 
Au Φt

 +Φt
C2x+Φt

C2y+Φt
C2z σx, σy, σz Φs

 +Φs
C2x-Φs

C2y-Φs
C2z σy, σz 

B u Φt
 -Φt

C2x-Φt
C2y+Φt

C2z σz 
Eα

g

Φs
C2d’-Φs

C4+Φs
C4-Φs

C2d σy, σz 
B2u Φt

 -Φt
C2x+Φt

C2y-Φt
C2z σy Φs

C2d’+Φs
C4-Φs

C4-Φs
C2d σx, σz 

B3u Φt
 +Φt

C2x-Φt
C2y-Φt

C2z σx 
Eβ

g

Φs
 -Φs

C2x+Φs
C2y-Φs

C2z σx, σz 
 
 

When acting by projection operators on functions (1) 
and (2), we obtain the total two-electron functions with 
zero total momentum for groups D2h and D4h, listed in 

Table 3. It follows from the induced representation theory, 
that the multiplicity of the appearance of each IR is equal 
to its dimensionality. Since the 2D IRs of group D4h  
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appear twice, additional quantum numbers are needed to 
classify them. Projecting the initial basis function onto the 
first line, we obtain the basis designated as Eα

g . Starting 
projection from the second line, we obtain the basis 
designated as Eβ

g. 
 At a general point in the Brillouin zone, all even IRs are 
possible for singlet pairs, and all odd IRs, for triplet pairs. 
It follows from formulae (3) and (4) that in the symmetry 
planes of the Brillouin zone, however, some linear 
combinations may become zero. Approaching a symmetry 
plane σh in the Brillouin zone, k- vector approaches its 
mirror reflection σh k, and the basis functions Φ

s
    

approach their mirror reflections σhΦ
s
   Two cases are 

possible in a symmetry plane σh. If the basis wave 
functions Φs

    and σh Φ
s
    appear in a linear combination 

with opposite signs, this combination becomes zero in the 
symmetry plane. An intersection of such a plane with the 
Fermi surface gives a line of zeros of the wave function. If 
the basis wave functions Φs

    and σh Φ
s
    appear in such a 

linear combination with the same sign, there are no 
symmetry grounds for the function to become zero. Since 
mirror reflection in a plane is equal to the product of a 
180o rotation about the normal to the plane with inversion, 
and inversion has already been used in constructing the 
basis functions, to investigate the nodal structure of 
functions it is sufficient to examine their behavior with 
respect to rotations only. The function of a singlet (triplet) 
pair is zero in a plane if, under the action of a 180o rotation 
about the normal to the plane the function changes sign 
(does not change sign), The results of such a study of wave 
functions of pairs are presented in Tables 3 The results for 
1D representations are unambiguous. Since 2D IRs in 
group D4h appear twice, the results of symmetry analysis 
for them are somewhat ambiguous. This conclusion is in 
line with the results reported by Volovik and Gor'kov [4], 
who obtained two types of basis functions for 2D IRs and 
three types for 3D IRs. The results obtained in the weak 
spin-orbit coupling approximation are also valid for singlet 
pairs in the case of strong spin-orbit coupling. To construct 
the triplet basis functions one should include the spin 
function in projecting.  

Angle-resolved photoelectron spectra [20] and 
conductivity spectra [21] indicate that the pseudogap in 
high-Tc-superconductors is anisotropic and is zero on the 
diagonals of a rectangle. Analysis of experimental data has 
led most researchers [22] to conclude that the SOP in high-
Tc-superconductors belongs to the Ag IR of group D2h. In 
connection with this, two possibilities are considered:  s- 
pairing, i.e., with no line of zeros, and d- pairing, with a 
line of zeros on the diagonals of a rectangle. In some 
cases, these pairing types were found to interact [22]. 

It follows from the data in Table 3 that, in the case of 
singlet pairs, corresponding to high-Tc-superconductors, 
all of the IRs except Ag have lines of zeros in the 
coordinate planes, which cannot be observed 
experimentally. Moreover, none of the IRs have zeros in 
the diagonal planes. It follows from the former observation 
that Ag pairing is the most likely. The second conclusion is 
trivial since reflection in the diagonal planes is not a 

symmetry element of group D2h. Thus, the observed nodal 
structure of electron pairs is more sophisticated than the 
structure stemming from the crystal symmetry. 

To describe the symmetry of such a wave function, let 
us choose two vectors, kα and kβ, symmetric with respect 
to the diagonal of the rectangle. The singlet wave 
functions Φs

α and Φs
β, corresponding to the IR Ag can be 

obtained from Table 3 by introducing additional subscripts 
α and β. Note that the two-electron states corresponding to 
different one-electron vectors k belong to the same IR, Ag 
in the space of two-electron states, and, in contrast to one-
electron states belonging to different k, may interact. The 
two resulting states can be written in the form 
 

Φs
s=c1(Φs

 +Φs
C2x+Φs

C2y+Φs
C2z)+c2(Φs

C2d’+Φs
C4+Φs

C4+Φs
C2d) (5) 

 
Φs

x2-y2= c2 (Φs
 +Φs

C2x+Φs
C2y+Φs

C2z)+c1 (Φs
C2d’+Φs

C4+Φs
C4+Φs

C2d ) (6) 
 

The former function is nonzero in the diagonal planes 
and is labeled with subscript s; the latter function 
approaches zero in the diagonal planes and is labeled with 
subscript x2 -y2. Note that the degree of orthorhombicity, 
quantified by (b-a)/(b + a), in YBaCuO materials is as low 
as about 2% [22] and can be thought of as perturbation. In 
the symmetry group D4h, function (5) belongs to the IR A1g  
, and function (6) belongs to the IR B1g The latter function 
is zero on the diagonals, in agreement with experiment 
[20-22]. Thus, it follows from the present group-
theoretical analysis, that the two-electron wave function in 
the high-Tc-superconductors corresponds to the  IR B1g of 
group D4h rather than to the IR A1g of group D2h. 
 

 
3. Conclusions 
 
In a conclusion, the direct application of the space-

group representation theory, makes possible to obtain 
limitations for the symmetry of SOP on lines and planes of 
symmetry in one-electron Brillouin zone. In the case of 
highly symmetric UPt3 only theoretical nodal structure of 
IR E2u is in agreement with all the experimental results. 
On the other hand, in the case of high-Tc-superconductors 
the two electron description of Coper pairs in D2h 
symmetry is not sufficient to describe experimental nodal 
structure. It was shown that in this case, the nodal structure 
is the result of underlying interactions between two-
electron states and hidden symmetry D4h. 
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