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Space-group approach to two-electron states in
unconventional superconductors
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The direct application of the space-group representation theory, makes possible to obtain limitations for the symmetry of
SOP on lines and planes of symmetry in one-electron Brillouin zone. In the case of highly symmetric UPts only theoretical
nodal structure of IR Ey, is in agreement with all the experimental results. On the other hand, in the case of high-Tc-
superconductors the two electron description of Coper pairs in Dan symmetry is not sufficient to describe experimental nodal
structure. It was shown that in this case, the nodal structure is the result of underlying interactions between two-electron

states and hidden symmetry Dap.
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1. Introduction

Unconventional superconductivity is connected with
different symmetry violations and the superconducting
order parameter in these materials vanishes at points and
lines on Fermi-surface [1]. Time-reversal symmetry is
violated in heavy fermion superconductors (UTh)Bei; ,

SroRuO4,  PrOs,Sby, 2] and  high-temperature
superconductors  [3]. The nodal structure of
unconventional superconductors was investigated by

virtue of point-group approach [1, 4, 5] and a space-group
approach [6-11]. The space-group approach is based on
space-group irreducible representations (IRs) for one-
electron wave functions [12] and on the assumption of
Ginzburg and Landau [13] that superconducting order
parameter (SOP) is identical with the wave function of a
Cooper pair.

2. Space group approach

The general principles of constructing singlet and
triplet pairs were formulated by Anderson [14]. In a
spherically symmetric case, the electrons in a Cooper pair
have opposite momentums. The wave function of the pair
is antisymmetric with respect to permutations and
invariant under lattice translations, and transforms
according to the IR of the point group. The spatial parts of
singlet and triplet pairs a given by two following formulae:
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Superscripts denote the number of electronic

coordinate and subscript / corresponds to the action of
space inversion on the initial spatial function. The wave

function of a singlet pairs is even, and that of triplet pairs
is odd. In real crystals, the wave function of electrons is
characterized by the star {k} of wave vector k. Clearly, a
correct translation-invariant two-electron function must be
antisymmetric with respect to permutations and must be a
linear combination of the functions belonging to all the
prongs of the star {k}. The structure of such a function
depends on vector k and its symmetry group H. On the
directions and planes of symmetry one-electron wave
functions ¢ are transformed according to IR D of group H
and thus the symmetry of two-electron functions (1) and
(2) is more complex. It follows from the induced
representation theory [12], that the symmetry properties of
function (1) and (2) on directions and planes of symmetry
are defined by their characters on the group M=H+IH:

27 (h)= 2*(D(h)) 3

¥~ (Ih) =+ y(D(Ihih)) 4,

where plus sign corresponds to the singlet pair, minus sign
corresponds to the triplet pair and / is an element of group
H. To obtain the total basis set one should act on these
functions by the pure rotational elements transforming the
initial k-vector into other prongs of its star and to
decompose it into irreducible basis sets. This procedure is
simplified by the Frobenius reciprocity theorem [6-12],
according to which only those IRs of the whole group G
are possible, whose characters are not orthogonal to
characters (3), (4). The analysis for the planes of
symmetry is given in Table 1. The relevant subgroup C»,
has two even and two odd IRs. The singlet transforms
according to IR 4, of C,, subgroup. The absence of the
other IR B, means that some even IRs of he group G are
forbidden at the plane of symmetry. If one of such IRs
corresponds to Cooper pairing, the SOP of this symmetry
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has nodes on this plane. The intersection of this plane with
Fermi-surface results in line of nodes. The spatial part of
triplet function also has line nodes, but when this function
is multiplied by triplet spun function, transforming
according to IR T, in O, group, total wave function
contains all IRs of C,;, group. This case corresponds to the

Blount theorem [5]. In axial symmetry groups, like Dgh,
spin parts M=+1 and M=-1 (ferromagnetic spin
orientation, IR Ej,) transform independently from pair
with M=0 (antiferromagnetic spin orientation, IR 4,,) and
lines of nodes are required by the symmetry.

Table 1. Nodal structure of two-electron states on the planes of symmetry for groups O;, and Dy,

G Type of | Symmetry element IR of Cy, Structure on
character E oy, 1 C, the w.f.

Oy Dg P 1 1 1 1 A, nodes

Oy, Dg, X 1 1 -1 -1 B, nodes

O, 1T 3 -1 -3 1 24,+B, no nodes

Dy, A >((Ess) 2 -2 -2 2 24, nodes

Dgn 1 x4(Azg) 1 1 -1 -1 B, nodes

Let us consider as an example of the odd [15] and
antiferromagnetic  [16] superconductor UPt; (Dgy,
symmetry). Making use of the last line of Table 1 and
Frobenius reciprocity theorem possible IRs for
antiferromagnetic odd pairs are listed in Table 2.

Table 2. Possible IRs for triplet antiferromagnetic
Cooper pairs in Dgj,. symmetry.

Planes of symmetry HII Dy,

o) B, +BytE,

o, Ay Biw Erw Eau
oy Ay Boy Epy Exy
Direction Z" A

1) For one-dimensional IRs of H.

If the wave vector of an electron is parallel to the Z
axis, the wave vector group H is Cg, and the symmetry
group M of the pair is Dg,. In this case the result depends
on the symmetry of one-electron function ¢ with respect of

rotations around the axis. We consider here the one-
dimensional small IR for which the symmetry of spatial
part of two-electron function is A,,.

Experimental data [17] indicate that there is a line of
zeros in the basal plane. It follows from the Table 2, that
the corresponding IRs are Ay, Ay, and E,,, which are not
among the possible IRs for antiferromagnetic triplet pairs.
There is also experimental evidence [17] that the SOP
becomes zero at a point on the vertical axis. In light of
this, the A, IR, which has lines of zeros in vertical planes,
and theA;, IR, which does not have zero in the vertical
direction, must be discarded. The remaining IR, E,,, has
zero at a point in the vertical direction and in basal plane.
Thus, the nodal structure of the SOP of E,, symmetry for
an antiferromagnetic phase of Dg, symmetry agrees with
all experimental data on the symmetry of the SOP of UPt;.
This conclusion is in line with simulation results [18].
Magnetization anisotropy data for UPt; in the
superconducting state can only be accounted for by the £/,
and FE,, IRs [19]. Given that the SOP is odd, this also
gives the IR E,,.

Table 3. Spatial parts of Cooper pair wave functions for point groups D,, and Dy, and their nodal planes.

Do Dy
IR Pairing function nodes |IR Pairing function nodes
Ag (IDS+®22X+CDSCzy+CDZZZ no Al DH DDy TP, Do g T DEs DLyt Ding no
Big DD - Doy + Do, G0y |Ax DD - Doy + D, Pog+Pest Pru-Piag Ox, Oy, Oxy> Ouxy
By, DD, + Doy Do, c,0x  |Big DH Do F Doyt PLoy-PLog-Prg-PLa-Diag Oxy> O xy
Bs, DH Doy -Dny-Din, 6,0y |Ba DD - Doy DA Ding-Pes-Peat Pog Ox, Oy
Ay OH DL+ Doyt Py, | G5, Gy, 0, | B DD -PLoy-Pea, Oy, O,
B, Q- Do - Doyt P, C, Deog-PLatDPes-Piog Oy, Oy
Ba, DDy, +Day-Pr, Oy EZ DroatPLs-Pra- Doy Ox; Oz
Bsy OHD Lo -Doy-Po, Ox DD +PLoy-Dea, Ox, Oy

When acting by projection operators on functions (1)
and (2), we obtain the total two-electron functions with
zero total momentum for groups Dj, and D, listed in

Table 3. It follows from the induced representation theory,
that the multiplicity of the appearance of each IR is equal
to its dimensionality. Since the 2D IRs of group Dy,



Space-group approach to two-electron states in unconventional superconductors 1761

appear twice, additional quantum numbers are needed to
classify them. Projecting the initial basis function onto the
first line, we obtain the basis designated as EJ . Starting
projection from the second line, we obtain the basis
designated as Eg.

At a general point in the Brillouin zone, all even IRs are
possible for singlet pairs, and all odd IRs, for triplet pairs.
It follows from formulae (3) and (4) that in the symmetry
planes of the Brillouin zone, however, some linear
combinations may become zero. Approaching a symmetry
plane o, in the Brillouin zone, k- vector approaches its

. . . . S
mirror reflection o, k, and the basis functions @

. . . S
approach their mirror reflections 6,® Two cases are
possible in a symmetry plane o,. If the basis wave

functions ® and o, ® appear in a linear combination
with opposite signs, this combination becomes zero in the
symmetry plane. An intersection of such a plane with the
Fermi surface gives a line of zeros of the wave function. If

the basis wave functions ® and o, @ appear in such a
linear combination with the same sign, there are no
symmetry grounds for the function to become zero. Since
mirror reflection in a plane is equal to the product of a
180° rotation about the normal to the plane with inversion,
and inversion has already been used in constructing the
basis functions, to investigate the nodal structure of
functions it is sufficient to examine their behavior with
respect to rotations only. The function of a singlet (triplet)
pair is zero in a plane if, under the action of a 180° rotation
about the normal to the plane the function changes sign
(does not change sign), The results of such a study of wave
functions of pairs are presented in Tables 3 The results for
1D representations are unambiguous. Since 2D IRs in
group Dy, appear twice, the results of symmetry analysis
for them are somewhat ambiguous. This conclusion is in
line with the results reported by Volovik and Gor'kov [4],
who obtained two types of basis functions for 2D IRs and
three types for 3D IRs. The results obtained in the weak
spin-orbit coupling approximation are also valid for singlet
pairs in the case of strong spin-orbit coupling. To construct
the triplet basis functions one should include the spin
function in projecting.

Angle-resolved photoelectron spectra [20] and
conductivity spectra [21] indicate that the pseudogap in
high-T.-superconductors is anisotropic and is zero on the
diagonals of a rectangle. Analysis of experimental data has
led most researchers [22] to conclude that the SOP in high-
T.-superconductors belongs to the A, IR of group Dy;. In
connection with this, two possibilities are considered: s-
pairing, i.e., with no line of zeros, and d- pairing, with a
line of zeros on the diagonals of a rectangle. In some
cases, these pairing types were found to interact [22].

It follows from the data in Table 3 that, in the case of
singlet pairs, corresponding to high-7,.-superconductors,
all of the IRs except 4, have lines of zeros in the
coordinate  planes, which cannot be observed
experimentally. Moreover, none of the IRs have zeros in
the diagonal planes. It follows from the former observation
that 4, pairing is the most likely. The second conclusion is
trivial since reflection in the diagonal planes is not a

symmetry element of group D,,. Thus, the observed nodal
structure of electron pairs is more sophisticated than the
structure stemming from the crystal symmetry.

To describe the symmetry of such a wave function, let
us choose two vectors, k, and kg, symmetric with respect
to the diagonal of the rectangle. The singlet wave

functions (I)i and CD;, corresponding to the IR A, can be

obtained from Table 3 by introducing additional subscripts
a and PB. Note that the two-electron states corresponding to
different one-electron vectors k belong to the same IR, 4,
in the space of two-electron states, and, in contrast to one-
electron states belonging to different k£, may interact. The
two resulting states can be written in the form

D= (D +(DSL2x+(DSczy‘HDSczz)+02(‘I’s(2d’+(Dsc4+‘I’S(‘4+(Dsczd) )
D’2,2= ¢y (P+D' o, HD oy H D o)1 (Pag Dt DD cng ) (6)

The former function is nonzero in the diagonal planes
and is labeled with subscript s; the latter function
approaches zero in the diagonal planes and is labeled with
subscript x> -y*. Note that the degree of orthorhombicity,
quantified by (b-a)/(b + a), in YBaCuO materials is as low
as about 2% [22] and can be thought of as perturbation. In
the symmetry group D.;, function (5) belongs to the IR 4,
, and function (6) belongs to the IR B, The latter function
is zero on the diagonals, in agreement with experiment
[20-22]. Thus, it follows from the present group-
theoretical analysis, that the two-electron wave function in
the high-T,-superconductors corresponds to the IR B, of
group Dy, rather than to the IR 4, of group D,

3. Conclusions

In a conclusion, the direct application of the space-
group representation theory, makes possible to obtain
limitations for the symmetry of SOP on lines and planes of
symmetry in one-electron Brillouin zone. In the case of
highly symmetric UP¢; only theoretical nodal structure of
IR E,, is in agreement with all the experimental results.
On the other hand, in the case of high-T -superconductors
the two electron description of Coper pairs in Dy,
symmetry is not sufficient to describe experimental nodal
structure. It was shown that in this case, the nodal structure
is the result of underlying interactions between two-
electron states and hidden symmetry D,
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